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EFFECTIVE VISCOSITY IN THE SIMULATION OF SPATIALLY
EVOLVING SHEAR FLOWS WITH MONOTONIC FCT MODELS

1. INTRODUCTION

Recent papers (1-6] have reported results of numerical simulations of subsonic, spatially

evolv'ng two- and three-dimensional planar shear layers using monotonic FCT models. The

numerical model solves the time-dependent, compressible, inviscid conservation equations for

mass, momentum, and energy in three dimensins in order to examine the evolution of large-

scale coherent structures. The equations are solved numerically using a fourth-order phase-

accurate FCT algorithm, directional timestep-splitting techniques on structured grids, and

appropriate inflow and outflow boundary conditions [1,2]. This approach has been shown to

be adequate for simulating the moderate and high-Reynolds-number vorticity dynamics in the

transition region of free flows and reproduces the large-scale features of the flow observed in

the laboratory experiments, e.g., the asymmetric entrainment [3], the distribution of merging

locations [4], the spreading rate of the mixing layers [5,6], and the basic three-dimensional

features of the vorticity dynamics [6,7]. In this paper, we address some of the numerical issues

of resolution which are important for validations in the studies of physical mechanisms in these

simulations.

A large-eddy-simulation approach is used to compute the evolution of the transitional flow

dynamics. The nonlinear FCT high-frequency filtering, combined with the conservative, causal

and monotone properties of the algorithm, are expected to effectively provide a minimal subgrid

model by maintaining the large scale structures while numerically smoothing the scales with

wavelengths smaller than a few computational cells. In this framework, the small residual

numerical viscosity of the algorithm, combined with unresolved small scale convection at high

Reynolds numbers, mimics the behavior of physical viscosity.

The objective of this paper is to study the effective numerical diffusion of the algorithm

in the low-Mach-number simulation of free mixing layers, and its dependence on gridding and

free-stream velocity ratio. A byproduct of this work is to assess the gridding requirements for

an FCT-based shear-flow model including physical viscosity. In Sec. 2, we introduce the main

steps of the FCT algorithm as used in the model, and discuss the problem of measuring the

residual numerical diffusion of the scheme. In Sec. 3.1, we review the calculation of the laminar

spread of a free mixing layer based on boundary layer theory. The theoretical results are used
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as reference for the effective measurement of the global numerical diffusion of the model in

Sec. 3.2. The final conclusions are given in Sec. 4.
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2. THE FCT ALGORITHM

We restrict our discussion to the one-dimensional, explicit, fourth-order phase-accurate

FCT algorithm [8] used in the shear-flow applications. The numerical model solves a system of

generalized continuity equations of the form

Of + 1( v f ) =Of -.L h, (1)

t Or

where f typically represents mass, momentum, or energy densities, h is an appropriate source

term dependent on the flow variables and their spatial derivatives, v is the fluid velocity, and

r is a spatial variable. The algorithm consists of a two-step predictor-corrector scheme which

ensures that the conserved quantitks remain monotonic and positive when so required. First,
it modifies the linear properties of a high-order algorithm by adding diffusion during convective

transport to prevent dispersive ripples from arising when sharp discontinuities are present. The
added diffusion is then removed in the antidiffusion phase of the algorithm in such a way that

the residual numerical diffusion is minimal while preserving the monotonicity and positivity of

the scheme. The algorithmic details for the solution of Eq. (1) are discussed in general elsewhere

[9]. In order to introduce the basic ideas it suffices here to restrict the discussion to the case of

the mass density equation (f = p, h = 0), case for which the steps are briefly discussed below.

In the first stage of the algorithm, the convection phase involves

jf ,E'-,j j (2a)

followed by the diffusion phase

Ij,I v+(f +1 - vjj - j1 (2b)
where i5a) denotes the variable f at grid point j and timestep n, j + 21 denotes the midpoint

between grid points j and j + 1,
=  t+ (3)

bt and 6r are the integration timestep and the grid spacing, respectively, and [81
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+ (4)

In turn, the correcting antidifussion stage consists of

f(n+l)j,. ., +,+ .+ + (5)

where the raw antidiffusion fluxes :Ij+1 are defined by

+j = Aj+i(f +l - f), (6)

and 4 denotes the corrected antidiffusion flux. Monotonicity is preserved by the flux correction

by ensuring that the diffusion compensation generates no new maxima or minima in the solution

and existing extrema are not accentuated 18]. In practice, this is enforced by defining the

corrected fluxes as follows,

= Max [O,Min (S(ij+2 ].i+1),lI~j+ lS(jj , (7)

with S = sign(f~i - fj), and ISl = 1.

In the schemes used in the FCT shear-flow models, the antidiffusion coefficients Aj+ are

defined in terms of a diffusion parameter, D,, by

= 1 - (8)

where De < 1. For D. = 1, the scheme reduces to the fourth-order phoenical FCT scheme [8].

A special case arises in the absence of convection, when fj+j = 0. In this case, in the vicinity

of a sharp discontinuity the antidiffusion flux 1j+j survives intact through the flux corrector,

and cancels the corresponding diffusion flux exactly if De = 1, in which case the discontinuity

is preserved after the FCT cycle. Standard linear stability analysis shows that for Dc < 1
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the scheme remains fourth-order-phase-accurate, and the amplitude accuracy becomes second-

order, with the second-order error-term for the amplitude proportional to (1 - D,). Thus,

by choosing D, slightly smaller than unity (typically, D, = 0.997 - 0.999 in the shear-flow

applications) a small nonvanishing residual numerical diffusion can be provided by the scheme.

A local estimate of the residual numerical diffusion introduced by D, in the limit v=0 has

been communicated to the authors [10], and is briefly described in what follows. Combining (2)

and (5) and comparing with the second-order, central-differenced version of the one-dimensional

diffusion equation,

Of "L)0 2 f = O, 
(9)

we can identify

D t 1(1 - D,), (10)
(6r)2 6

or equivalently, the diffusion coefficient is

D =1(l-D,) ( ) 2  (11)
6 bt

Alternatively, we can rewrite this expression in a form useful in calculations performed

with a fixed Courant number, c = 6t(jvI + a)pe.k/r,

D = 1(1 - De) 6r ( v l + ,)pek (12)

where a is the local speed of sound. The inversely-proportional dependence of D on c reflects

the fact that a larger amount of residual numerical diffusion results from taking a lower value

of c and correspondingly shorter timesteps.

Equations (11) and (12) give local estimates for the numerical diffusion of the algorithm in

the absence of convection. Standard one-dimensional tests show that sharp discontinuities are

5



maintained by the FCT algorithm and remain confined within 3-5 cells (e.g., ref. 11]. This in-

dicates that the actual residual numerical diffusion of the algorithm is nonlinear and somewhat

dependent on the solution because of the flux correction. As a consequence, even if we enforce

constant 6r and c in the simulations - in which case Eq. (12) suggests that the concept of

numerical diffusion can be physically meaningful - the effective (global) numerical diffusion in

multidimensional spatially evolving shear flow simulations cannot be estimated using straight-

forward extrapolations from one-dimensional local results. Thus, we need to obtain practical

measures of the effects of numerical diffusion when non-linear convection and compressibility

are present, and when we have shear discontinuities rather than contact discontinuities. The

present approach focuses on the initial laminar spread of a step-function velocity profile due to

viscous (numerical) diffusion in the Limit of low Mach numbers. In this case, we compare the

results of the simulations with the known incompressible solution.
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3. LAMINAR SPREADING OF THE MIXING LAYER

3.1 Boundary Layer Theory

We consider the laminar spread of a mixing layer initially defined by a step-runction profile
for the strearnwise velocity and zero transverse velocity. The flow configuration is indicated
schematically in Fig. la, where the laminar spread of the velocity profile (as given by g(ir) for

z > 0) can be calculated under certain flow conditions using boundary layer theory [12]. In this
regime, the flow can be considered virtually incompressible, and the problem involves a thin
shear layer with v/u << 1. Under these conditions, the pressure gradients are negligible and

the steady-state incompressible equations describing the problem can be written

Nt 8V 2
S+ - v= , (13)

au- + u C-i 2- 0 (14)8:- + 8y - Vy 2 =

where v is the kinematical viscosity. The boundary conditions for the velocities in the steady

state problem are specified by

U(O,y > 0) = U, u(O,Y < 0) = U2 , v(O,Y) = O, (15a)

U(z,Xy = +oo) = U, V(z,Xy = +0) = 0, (lib)

u(Z, Y = -oo) = U2, v(X, Y = -o) = 0, (15c)

with U2 > Ui.

Defining the similarity variable

= p(zI'lU2)-, (16)

the solution can be expressed in terms of a function G(77) related to the stream function T and
the velocities through
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IF = (zzU2)IG(i7), (17)

u = U2 dG(v7) = U2g(fl). (18)

The function G(17) satisfies the ordinary differential equation

Gd 2G ( 7 ) 2 d G (
7 ) (19)G di72 2 dr? =0,(9

which must be solved with the boundary conditions

G(0) = 0; G'(-oo) = A = U21U1 ; G'(+oo) = 1. (20)

Equation (14) is solved numerically using finite differences. Typical solutions obtained fcr the

laminar spread of an incompressible mixing layer are shown in Fig. lb for A = 2,5, 10, 00.

These solutions are used as reference to measure the effective numerical (viscous) diffusion of

the algorithm when simulating thin shear flows.

3.2 Simulated Mixing Layer

In order to talk about a meaningful effective numerical diffusion when D, < 1 and measure

its effects, we perform simulations for fixed Courant numbers in appropriate laminar flow cases

using uniform grids in the regions of interest. We restrict our time-dependent simulations

to the limit of low Mach numbers. In this limit, the flow is virtually incompressible and a

comparison can be set with the results in section 3.1 after attaining the steady-state regime using

a time-marching approach. We seek a measure of the effective viscous diffusion by comparing

the numerical spread of an initial step-function streamwise velocity profile with the laminar

spread predicted by boundary layer theory. The choice of D, < 1 is dictated by the interest in

numerically simulating the large scale features of transitional, free shear flows in the limit of large

(but finite) Reynolds numbers, while maintaining the accuracy of the scheme as close to fourth

order as possible. n the present study we have specially focused on the case Dc = 0.999, which
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has been the choice of most of the previous shear-flow simulations using the FCT numerical

model. The dependence of the results on D, is then discussed at the end of the Section.

Shear flows are highly unstable, and in order to compare the development of the mixing

layer with theoretical results, we need to isolate the laminar (viscous) growth of the mixing

layer from the growth due to the Kelvin-Helmholtz instability. An unavoidable initial mismatch

due to discretization, between flow and boundary conditions near the inflow introduces small

transverse velocity perturbations which excite the Kelvin-Helmholtz instability in the shear

layer near the inflow boundary [3]. This initial instability is subsequently followed by vortex

roll-up and global self-sustained instabilities, in which new vortex roll-ups are triggered in the

initial shear layer by pressure disturbances originating in the fluid accelerations downstream

[13]. To ensure that the spread of the streamwise velocity profile is due only to the residual

numerical diffusion of the algorithm, we have chosen to force the transverse velocity to maintain

its initial and inflow value (zero) throughout the computational domain during the simulations.

Since the FCT shear flow model is nearly inviscid, the model is expected to be meaningful

for high-Reynolds-number transitional flow regimes - in which the large-scale flow features are

independent of Reynolds-number (Re). The approach used to obtain measures of the effective

residual numerical viscosity involves approximations which become valid in this limit of high

Re, where v/u = 0(b) = O(1/Re), and 6 is the thickness of the mixing layer. This approach

is also consistent with the thin-shear-layer approximations used to derive Eq. (14) from the

incompressible Navier-Stokes equations. In particular, as in boundary layer theory, the viscous

diffusion term proportional to O2u/ y 2 is the dominant one in this limiting flow-regime, and also

responsible for the observed numerical spread of the simulated mixing layer in the framework

of the present study, where the streamwise gradients are much smaller.

With an explicit unsteady model we can not practically afford to deal with very small

Mach numbers because the small timesteps dictated by the Courant condition for numerical

stability determine very long corresponding runs to reach steady state. A compromise choice

in this work in order to have practical calculations and at the same time nearly incompressible

flow, is to use mean free Mach numbers, M - 0.3-0.4, for which the compressibility effects as

measured by the relative mass-density variations Ap/p _ M 2/2 [14], are at most of the order

of 4-8%.
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Figure 2 shows the flow configuration for the simulated mixing layer consisting of two

coflowing streams of air entering a long chamber, where the separation between walls is chosen

sufficiently large to ensure that the mixing layer growth is unaffected by their presence. Inflow

and outflow boundary conditions are imposed where appropriate in the streamwise direction

(z), and reflecting free-slip wall boundary conditions are required in the transverse direction

(y).

The inflow and outflow boundary conditions were developed and tested for multidimen-

sional FCT calculations [1-3]. The inflow boundary conditions specify the density and velocity

of the jet and impose an homogeneous Neumann condition on the energy. These conditions

are implemented at the inflow by specifying the guard-cell values for the mass and velocity

densities:

PG1 = Painflow, (21a)

UG, = Uinflow = U(y), (21b)

VG, = 0, (21c)

and imposing a zero-gradient condition on the pressure:

PG1 = P1, (21d)

where the subscripts G1 and 1 refer to the guard cells and to the first row of cells inside

the computational domain (at the inflow), respectively. The guard-cell values of the energy

are calculated through the equation of state as a function of the mass density, momenta and

pressure. By imposing a floating condition on the pressure at the inflow, finite (unsteady)

cross-stream pressure differences are allowed to appear in the initial shear layer in response to

acoustic waves generated by events downstream.

The boundary conditions at the open boundary downstream approximate the time-

dependent flow equations at the boundaries, by linearizing the inviscid flow equations and

reducing them to advection equations in the outflow direction (z),

OQ/I9t + U1oCOQ/xZ = 0, (22)
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where ul., is the local z-component of the velocity near the boundary. This equation is dis-

cretized by a first-order upwind scheme. The result is a relation between the outflow guard-cell

value Qn as a function of Qn 1 and IV- 1,

Q =-" I1 -- C) "+" Q,-1, (23)

where n and n - 1 denote the current and previous integration cycles, and N corresponds to

the boundary cell [2]. In addition,

f = UocAt/AZN, (24)

At is the integration timestep, and AXN is the size of the computational cell at the outflow

boundary. The outflow conditions specified by Eq. 23 are imposed on the mass- and momentum-

density variables. Information about how the flow relaxes to ambient conditions is provided

by specifying the ambient pressure Pa,nb at infinity and imposing a relaxation rate on the

pressure [1,3]. The guard-cell value of the pressure is defined through the expression PGN ,

PN + (Pa.b - PN) X AXN/?G,.. This defines PG, by interpolating between the pressure value

at the N - th cell and the value Pa,,b specified at infinity. The guard-cell values of the energy

are then calculated through the equation of state as a function of the other flow quantities.

These inflow conditions allow the pressure at the inflow to vary in response to acoustic waves

generated by events downstream. An important result of allowing this feedback to occur is that

physical, self-sustained global instabilities can occur naturally in the calculations [13].

Since the numerical diffusion depends on the grid spacing, the latter is kept constant in

the region of shear layer development. Twenty or more evenly spaced computational cells are

used in the transverse direction in the neighborhood of the center of the shear layer, which is

initially defined by a (one-cell) step-function discontinuity. Other cases, involving nonsquare

uniform griddings and geometrical stretching in the streamwise direction are also considered

in order to specifically investigate the effects of non-uniformities. The particular features of

the computational grids used in this work are summarized in Fig. 3. The actual dimensions

of each domain in Fig. 3 are chosen in such a way to ensure computational efficiency while

allowing an adequate description of the evolution of the shear layers. The timesteps used in

the calculations are determined from the free-stream conditions by imposing Courant numbers

in the range 0.4-0.46.
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We examine a number of different cases, in which we study the spreading of u(y) from an

initial step-function velocity profile at z = 0 as a function of streamwise distance z, in terms of

the free-stream velocity ratio, gridding, and Courant number. In each case, the time-evolution

of the calculations is pursued long enough to ensure that the initial transients flow out of the

computational domain and a steady state regime is attained. We reduce the calculated profiles

of normalized streamwise momentum § = (pu)/(poU2 ) at different streamwise locations with

the similarity variable, q = y(zv/U 2)-I, where p - p. = ambient mass density, and v is an

adjustable viscosity parameter. The effective numerical diffusion ve is defined to be equal to the

viscosity parameter giving the best fit of §(17) to the laminar mixing layer solution g(77) = u/U 2 .

The fit is based on the least rms deviations a, and a2 defined by

o2(V) = N, N
NY= l-- Z [9(77,,i) - g(7,)], (25)

=1 (/v,-1)(/v.-1)-

Or,( [ Ag(,,)) A_,] , (26)

where ip,, = i-l,,(v) = yI(zv/U2)-, (y1,y2,...,yN,] and [Zl,.2, ...., ZN,] are the fixed stream-

wise and cross-stream sampling locations, respectively, and A is the difference operator,

AH(i) = H(i + 1) - H(i). This approach is intended to obtain a quantitative global mea-

sure of the effective numerical diffusion of the algorithm and to examine the extent to which

the numerically simulated profiles can be reduced to a similarity solution. The procedure is

expected to give an estimated effective Reynolds number associated with the (small) scales of

the order of a few computational cells.

Typical results corresponding to simulations with A = 5 in grid a of Fig. 3 are shown in

Fig. 4. Figure 4a shows the behavior of a1 and 0'2 as a function of v. Associated with the par-

ticular grid chosen, the figure shows least deviations for v = v. ;%; 0.16cmi2sec- 1 , corresponding

to air viscosity at the standard temperature and pressure conditions of the simulations. Profiles

of §(7) are compared with g(v7) in Fig. 4b, where the markers correspond to actual grid points

and distinguish between different streamwise stations. The spreading of the initial step-function

profile is essentially confined within 3-5 computational cells for the range of streamwise loca-
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tions considered, and the calculated points collapse quite well in the vicinity of the theoretical

curve. The optimal fit in this case leads to an effective Reynolds number, Re'ff = U6 /Ve 1800,

where U = (U1 + U2)/2, and 6 = 6y, is taken to be the initial thickness of the shear layer. Based

on Eq. (12), with U2 = 2.0 x 104 cm/sec, a = 3.5 x 10" cm/see, and c = 0.5, the local estimate

of the numerical diffusion V for this case turns out to be nearly three times larger than Ve.

A larger local prediction for the effective numerical diffusion is expected, since Eq. (12) will

estimate the transverse numerical diffusion of the shear without accounting for the streamwise

convection of the fluid elements.

The numerical diffusion is slightly different on each side of the shear layer. This can be

observed in Figure 4b for A = 5, which suggests that the diffusivity is smaller on the slower

side (q > 0). The dependence of this diffusivity difference as a function of free-stream velocity

ratio A can be obtained by examining the partial rms deviations a,+ and o-, corresponding

to 7 > 0 and 77 < 0, respectively, defined by

1

V :il, >0

In Fig. 5 we plot a,, a,+, ai- for the extreme values of velocity ratio considered here, namely

for A = 2 and A = oo. The separation between the minima of o+ and o- can be used

to measure the difference between the numerical diffusivities on each side of the shear layer.

These differences are less pronounced for the case A = 2 with more nearly similar free-stream

velocities, and can be attributed to a small streamwise-velocity dependent contribution to the

global numerical diffusion, associated with the integration in the z-direction. The origin of this

contribution can be understood locally by noting that the antidiffusion will never cancel the

diffusion exactly at the end of the FCT cycle if convection cannot be neglected (cf. Eqs. (4) and

(8)). A local analysis similar to that in Sec. 3.1 shows the presence of an additional velocity-

dependent diffusion term with expected behavior of the form O(c6zu 2), which is consistent

with the observed (global) differences. Alternatively, velocity-dependent discrepancies between
numerical and theoretical results can also be expected to some extent due to the fact that the

flow is solenoidal in the theoretical (incompressible) case, whereas the regime of the compu-

tations is characterized by low, but finite, Mach number. More specifically, in the framework
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of the present computations, Ov/Oy is independent of Ou/Ox and vanishes by construction, so

that the computed velocity field has a nonzero divergence, V.u = Ou/1Z # 0. Thus, zones

of positive (negative) divergence appear during the development of the mixing layer, as the

top (bottom) stream accelerates (decelerates), which could also explain the larger (smaller)

diffusivity observed in the computed profiles.

Figure 6 shows the dependence of the rms deviations or, on the free-stream velocity ratio A

in grid a of Fig. 3 for fixed U2 = 2 x 104 cm sec- 1 . The optimal value ve is not very sensitive to

changes in A, which is consistent with the local estimate for the numerical diffusion (Eq. (12)),

since (Ivl + a)p,.k is the same for all cases.

Figure 7 shows the typical linear dependence of ve on the diffusion parameter De, in

qualitative agreement with the linear dependence on (1 - D,) predicted by the local estimate

(Eq. (12)), but with a slope significantly smaller (e.g., of the order five times smaller on grid

a, for A = 5). As pointed out above, a smaller actual effective diffusivity than that predicted

by Eq. (12) can be attributed to the fact that the latter accounts for the local cross-stream

transverse numerical diffusion of the mixing layer when no streamwise convection is present.

Figure 8 shows a comparison similar to that in Fig. 4b (De = 0.999), for the case D, -

0.990, corresponding to the highest value of v. in Fig. 7. The spreading of the step-function

is now significantly faster, i.e., involves more computational cells at shorter distances from the

origin than those conseidered in Fig. 4b. The results also indicate that an improved agreement

with the theoretical spread is attained as the effective numerical diffusion v. increases.

Figure 9 shows the effect of grid spacing on the rms deviations for A = 5, by considering

a finer (Fig. 3b) and a coarser grid (Fig. 3c) than that used for the cases in Fig. 5 (grid a

in Fig. 3), with spacings twice as large and one-and-a-half times smaller, respectively. The

observed growth of v. in Fig. 7 implies a nonlinear dependence on grid spacing 6z,

Ve ~ (6z)a1, (28)

where ai = ai(D,) decreases from at = 1.48 to a, = 1.16 when D, is reduced from 0.999

to 0.990, approaching the value al = I (predicted by Eq. (12)) as v. increases. Thus, in
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calculations performed with fixed c, and when the initial velocity profile is defined by a smooth

function in such a way that the initial shear layer thickness is grid-independent, Eq. (28) implies

an increase in effective Reynolds number with grid refinement (6x -- 0) according to

Reeff , &Z- a (D.).  (29a)

In the case of the initial step-function velocity profile considered in this work, for which

the initial thickness of the shear layer is of order bz, we get

Reeff , b1(D) ,  (29b)

whereas Eq. (12) implies a value independent of grid size for Re.ff. The dependence of the

effective numerical diffusion on the Courant number is shown in Fig. 10 for grid c in Fig. 3.

The results now suggest tie nonlinear dependence

V, , C-a2(D), (30)

where 02 = 0 2(D,) increases from a2 = 0.49 to a2 = 0.83 when Dc decreases from 0.999 to

0.990, in contrast with the inversely proportional dependence on Courant number in Eq. (12).

As noted above, the functional behavior predicted by Eq. (12) (a2 = 1) is approached for larger

values of ve.

The effects of non-uniformities on the gridding are examined in Figs. 11-13 for Dc = 0.999.

We first examine the effects of changing the aspect ratio 6z/6y of the grid while maintaining it

evenly spaced in each direction. The plot of rins deviations in Fig. 11 suggests that changing

from 6 z/ 6 y = 1 (grid a of Fig. 3) to 6b/Ay = 2.5 (grid d of Fig. 3) does not significantly affect

the nature of the effective numerical diffusion. This is physically expected to some extent.

It indicates that for aspect ratios Sz/Ay > 1, v, is essentially determined by the (numerical)

viscous term proportional to 8 2u/8y 2 introduced by the algorithm. In Fig. 12 we include

results obtained on grids d and e of Fig. 3, both having a basic gridding aspect ratio 2.5 which
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is maintained throughout the region of interest in one case, and geometrically increased in

a significant portion of the domain, in the other. As can be expected, the results indicate

that if much larger non-uniformities in the gridding are introduced through grid stretching, the

numerical term associated with 82u/aX2 can no longer be considered negligible and the effective

diffusion can consequently become significantly larger than in the uniform case.

In order to further assess the dependence of the effective numerical viscosity on the gridding

aspect-ratio, we examine the results of planar shear flow simulations also initialized with a step-

function velocity profile, but for which the zero-transverse-velocity restriction is not enforced,

so that vortex roll-up can now take place. Figure 13 shows typical instantaneous visualizations

using contours of vorticity (11) and of a passive scalar (4') convected with the flow velocity,

where 0 is defined to be initially zero for the slower stream and unity for the faster stream. The

calculations are performed on grids f and g of Fig. 3, and the flow is organized by adding a small

time-dependent perturbation to the streamwise velocity at the inflow with frequency equal to

that of the most unstable mode. The figure shows the presence of vortex rolls resulting from

the evolution of the nonlinear Kelvin-Helmholtz instability. The frames shown are associated

with the same physical time, and identical conditions except for the uniform gridding, which

involves aspect ratio ex/6y = 1 in one case (Fig. 13a), and bx/by = 2.5 in the other (Fig. 13b).

In both simulations, the Courant number is c = 0.4, 6y = 0.015 cm, and \ = 5, with air streams

under the same temperature and pressure conditions as in the cases discussed previously. In

particular, the conditions of the simulations are such that the expected numerical diffusivities

in the case with 6x/53 = 1 are nearly the same as those found in the more resolved case of Fig. 9

(for D, = 0.999, and 6x = 6y = 0.016 cm). For each flow quantity, the contour intervals are

chosen to be the same in Figs. 13a and 13b. The effects of numerical diffusion on the flow can

then be inferred by examining the spreading of the high-strain region at the interface between

the two streams of 4 based on the distribution and density of contours, and by examining the

numerical stability of the vortical structures based on the vorticity contours. In turn, ve - based

on the comparison of the laminar computed and theoretical solutions - gives us an indication

of the amount of diffusion responsible for that spreading.

In the case of the calculation on grid f (aspect ratio unity), numerical diffusion effects

are responsible for the initial spreading of the step-velocity profile onto an inflectional profile
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confined within 3-5 computational cells, and are otherwise essentially negligible further on

downstream, as shown in Fig. 13a. In this case, the numerical diffusion effects are isotropic,
they preserve the large scale features of the flow without significant distortion, and thus mimic

very small physical-viscosity effects. Although the general features of the flow are similar in
both calculations, it is apparent that Fig. 13b, for which bz/ 6 y = 2.5, shows considerably

larger numerical diffusion effects. This is indicated by the significant spreading of the high-

strain regions (particularly on the faster side), and by the increasingly poor resolution of the

vortex rolls in terms of vorticity contours as we move downstream. This is in contrast with

the results in Fig. 11 suggesting that no significant differences should be expected between

calculations on grids f and g. major difference, however, is that the strain direction is now not

necessarily restricted to the transverse direction, and when 6z > by the high-strain region is

diffused more in the x-direction than in the y-direction.
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4. CONCLUSIONS

We have shown that the nonlinear residual numerical diffusion of the FCT shear flow model

with D, ' 1. can emulate the effects of physical viscosity. Effective (global) measures of the

numerical viscous diffusion in the model, v., were obtained by comparing the numerical spread

of low-Mach-number simulated mixing layers with the theoretical spread predicted by boundary

layer theory. Associated with ve, the profiles of calculated x-momentum at different streamwise

locations collapse quite well in the vicinity of the theoretical results when plotted as a function

of the similarity variable 7. We found that the global numerical diffusion is not very sensitive

to changes in free-stream velocity ratio A, and can be reduced to a desired level by refining

the grid spacing. For example, for D, = 0.999, when using the uniform grid a in Fig. 3, and

depending on A, the optimal v. was found to vary within a range of 80%-100% of the physical

viscosity value for air at the temperature and pressure conditions of the simulations.

When non-square uniform grids are used, the numerical diffusion is not isotropic and

the present approach for its global interpretation is difficult to implement, although it can

conceivably be used to obtain bounds on its magnitude. We found that the large scale features

of the shear flow can be significantly distorted by the effects of the non-isotropic numerical

diffusion. These results suggest that in inviscid simulations of shear flows where numerical

diffusion is the only cause of momentum diffusion, grids with aspect ratios as dose to unity as

possible should be used to minimize spurious flow distortions. This requirement can be dearly

relaxed when viscous terms are included in the model, and the grid size is chosen to ensure that

numerical diffusion is negligible as compared to physical diffusive effects.
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Fig. 1 a) Flow configuration for the theoretical study of the laminar spread of a mixing layer

initialized at x = 0 with a step-function velocity profile;

20



1

0.5-

01
-10 0 1 10

Fig. 1 b) mixing layer spread predicted by boundary layer theory for A = 2,5, 10, and oo.
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Fig. 2 Flow configuration for the simulated mixing layer.

22



6 3..

600 x 60 900x90
0 Ax=Ay=0.024 0 Ax=Ay= 0.016

0 14 0 14

2 c) (.,.,t)
Y (cm) 300x30

0 LAx A= y = 0.048
0 X (cm) 14

6 6
d) (.,*,t) e) (e,*,.)

260x60 150 x 60

Ax = 0.06 =2.5 x Ay Ax = 0.06 =2.5 x Ay
0 17 0 19

9 9
f) (o,t ) g) (o,t, )

116xlO0 116x250

Ax = 2.5 x Ay AX = Ay

00 Ay = 0.015 00Ay = 0.015
3.503.

Fig. 3 Computational domains and grids used in the mixing layer simulations.
9 :c=(U2 + a)At/Ay = 0.46.

: 20 evenly spaced computational cells are used in the y-direction around the shear; wall-
boundaries are approached through geometrical stretching of the grid (stretching fac-
tor= 1. 15).

t Gridding in z-direction is uniform.
* Grid is geometrically stretched in z-direction for z > 4 (stretching factor= 1.03).
o "c=0.4.

60 evenly spaced cells are used in the y-direction around the shear; wall-boundaries are
approached through geometrical stretching of the grid (stretching factor= 1.15).
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Fig. 4 Mixing layer simulation on grid a in case A = 5, D, = 0.999. a) Root-mean-square
deviations a, and a2 .
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Fig. 4 b) Comparison of momentum profiles §(77) for v, 0 .l6CM 2 sec-1 at selected
streamwise locations with profile (g(77)) predicted by boundary layer theory.
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Fig. 5 Mixing layer simulation on grid a. Dependence of diffusivities on each side of the

shear layer on velocity ratio A for D, = 0.999. The arrows indicate least values of a, at

intersections of curves of partial deviations ai,+ and a 1-.
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Fig. 6 Mixing layer simulation on grid a for D, = 0.999. Dependence of global numerical

diffusion on velocity ratio A.
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Fig. 7 Mixing layer simulation on grid a. Dependence of global numerical diffusion on diffusion

parameter De.
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Fig. 8 Mixing layer simulation on grid a in case A~ 5, D, =0.990. Comparison of momentum

profiles §(71) for v. = 0.16cm 2 c at selected streamwise locations with profile (g(if))

predicted by boundary layer theory.
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Fig. 9 Mixing layer simulation on grids a - A, = 5. Dependence of global numerical diffusion
on grid spacing for Dc = 0.990, 0.999. The dashed lines have the slope a1i = 1 predicted

by Eq. (12).
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Fig. 10 Mixing layer simulation on grid c, A = 5. Dependence of global numerical diffusion on
Courant number for Dc = 0.990, 0.999. The dashed lines have the slope G2 = 1 predicted
by Eq. (12).
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Fig. 11 Mixing layer simulation on grids a and d, A = 10, D, = 0.999. Dependence of global
numerical diffusion on gridding aspect ratio.
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Fig. 12 Mixing layer simulation on grids d and e, A = 10, De 0.999. Effects of grid stretching

in x-direction on global numerical diffusion.
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Fig. 13 Fully two-dimensional mixing layer simulation for A = 5. Effects of gridding aspect ratio

on global numerical diffusion for D, = 0.999. a) 6z = 6 (grid f); b) 6z = 2.56, (grid

g). Instantaneous flow visualization in terms of contours of vorticity (upper frame) and of

a passive scalar convected with the flow velocity (lower frame). The contour intervals for

each flow quantity are the same in a) and b).
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